
JAVA EXCEPTIONS

Compiled By FadelK

1

Objectives

 Learn what an exception is

 Learn how to use a try/catch block to handle
exceptions

 Become acquainted with the hierarchy of exception
classes

 Learn about checked and unchecked exceptions

 Learn how to handle exceptions within a program

2

public class Exc1 {

 public static void main(String[] args) {

 String[] ss={"Fadel","Waheed"};

 System.out.println(ss[2]);

 }

}

3 3

Exception in thread "main"

java.lang.ArrayIndexOutOfBoundsException: 2

 at Exc1.main(Exc1.java:5)

Java Result: 1

Output

public class Exc1 {

 public static void main(String[] args) {

 int x= 1;

 int y =0;

 System.out.println(x/y);

 }

}
Exception in thread "main" java.lang.ArithmeticException: / by zero

 at Exc1.main(Exc1.java:6)

Java Result: 1

Output

Introduction
4

 An exception is an abnormal event that arises during the execution
of the program and disrupts the normal flow of the program.

 Abnormality do occur when your program is running. For example,
you might expect the user to enter an integer, but receive a text
string; or an unexpected I/O error pops up at runtime.

 What really matters is "what happens after an abnormality
occurred?" In other words, "how the abnormal situations are handled
by your program."

 If these exceptions are not handled properly, the program
terminates abruptly and may cause severe consequences. For
example, the network connections, database connections and files
may remain opened; database and file records may be left in an
inconsistent state.

 Java has a built-in mechanism for handling runtime errors, referred
to as exception handling. This is to ensure that you can write robust
programs for mission-critical applications.

Previous Practices
5

 Older programming languages such as C/C++ have some drawbacks in exception handing.
For example, suppose the programmer wishes to open a file for processing:

1. The programmers are not made to aware of the exceptional conditions. For example, the
file to be opened may not necessarily exist. The programmer therefore did not write codes
to test whether the file exists before opening the file.

2. Suppose the programmer is aware of the exceptional conditions, he/she might decide to
finish the main logic first, and write the exception handling codes later – this "later",
unfortunately, usually never happens. In other words, you are not force to write the
exception handling codes together with the main logic.

3. Suppose the programmer decided to write the exception handling codes, the exception
handling codes interlinked with the main logic in many if-else statements. This makes main
logic hard to follow and the entire program hard to read. For example:

if (file exists) {

 open file;

 while (there is more records to be processed) {

 if (no IO errors) {

 process the file record

 } else {

 handle the errors

 }

 }

 if (file is opened) close the file;

} else {report the file does not exist;}

Exceptions In Java
6

 Java overcomes these drawbacks by building the
exception handling into the language rather than
leaving it to the discretion of the programmers:

1. You will be informed of the exceptional conditions that
may arise in calling a method. [Exceptions are
declared in the method's signature.]

2. You are forced to handle exceptions while writing the
main logic and cannot leave them as an afterthought.
[Your program cannot compiled without the exception
handling codes.]

3. Exception handling codes are separated from the
main logic. [Via the try-catch-finally construct.]

import java.util.Scanner;

public class Exc1 {

 public static void main(String[] args) {

 Scanner s= new Scanner(System.in);

 System.out.println("Before the try catch block");

 try {

 System.out.println("Inside Try block before reading");

 int i = s.nextInt();

 System.out.println("Inside Try block after reading");

 } catch (Exception e) {

 System.out.println("Inside Catch Block");

 }

 System.out.println("After the try catch block");

 }

}

7

Before the try catch block

Inside Try block before reading

123

Inside Try block after reading

After the try catch block

Output A

Before the try catch block

Inside Try block before reading

rrrr

Inside Catch Block

After the try catch block

Output B

What is catch (Exception e)
8

 Exception Classes

 The figure below shows the hierarchy of the Exception classes. The base
class for all Exception objects is java.lang.Throwable, together with its
two subclasses java.lang.Exception and java.lang.Error.

What is catch (Exception e) Cont.
9

 The Error class describes internal system errors (e.g.,
VirtualMachineError, LinkageError) that rarely occur. If such
an error occurs, there is little that you can do and the
program will be terminated by the Java runtime.

 The Exception class describes the error caused by your
program (e.g. FileNotFoundException, divid by zero,
IOException). These errors could be caught and handled by
your program (e.g., perform an alternate action or do a
graceful exit by closing all the files, network and database
connections).

import java.util.*;

public class Exc1 {

 public static void main(String[] args) {

 Scanner s= new Scanner(System.in);

 try {

 System.out.println("Enter X value");

 int x = s.nextInt();

 System.out.println("Enter Y value");

 int y = s.nextInt();

 System.out.println("X / Y = " +(x/y));

 } catch (InputMismatchException ime) {

 System.out.println("Invalid Integer Values");

 } catch (ArithmeticException ae){

 System.out.println("Could Not Calculate");

 }

 }

}

10

Enter X value

4

Enter Y value

2

X / Y = 2

Output A

Enter X value

rrr

Invalid Integer Values

Output B
Enter X value

44

Enter Y value

0

Could Not Calculate

Output C

How to Catch Exceptions
11

 Catch exceptions using try blocks:

 Each catch clause specifies the type of one exception, and provides
a name for it (similar to the way a function header specifies the type
and name of a parameter). Java exceptions are objects, so the
statements in a catch clause can refer to the thrown exception object
using the specified name.

try {

 // statements that might cause exceptions

 // possibly including function calls

} catch (exception-1 id-1) {

 // statements to handle this exception

} catch (exception-2 id-2) {

 // statements to handle this exception

 .

 .

 .

}

Checked vs Unchecked Exceptions
12

 As illustrated, the subclasses of Error and RuntimeException are known as unchecked
exceptions. These exceptions are not checked by the compiler, and hence, need not
be caught or declared to be thrown in your program. This is because there is not
much you can do with these exceptions.

 All the other exception are called checked exceptions. They are checked by the
compiler and must be caught or declared to be thrown.

The Checked Exception
13

 Exceptions must be Declared

 As an example, suppose that you want to use a

java.util.Scanner to perform formatted input from a disk

file. The signature of the Scanner's constructor with a

File argument is given as follows:

 The method's signature informs the programmers that

an exceptional condition "file not found" may arise. By

declaring the exceptions in the method's signature,

programmers are made to aware of the exceptional

conditions in using the method.

public Scanner(File source) throws FileNotFoundException;

The Checked Exception
14

 Exceptions must be Handled

 If a method declares an exception in its signature, you cannot use this method
without handling the exception (you can't compile the program).

 The program did not handle the exception declared, resulted in compilation
error.

1. import java.util.Scanner;

2. import java.io.File;

3. public class test {

4. public static void main(String args[]){

5. Scanner in = new Scanner(new File("test.in"));

6. }

7. }

Source code that will never compile

1. import java.util.Scanner;

2. import java.io.File;

3. public class test {

4. public static void main(String args[]) throws Exception {

5. Scanner in = new Scanner(new File("test.in"));

6. }

7. }

Source Code not to catch the exception but to throw it.

The Checked Exception Cont.
15

1. import java.util.*;

2. import java.io.*;

3. public class Exc1 {

4. public static void main(String[] args) {

5. try {

6. Scanner s= new Scanner(new File("test.in"));

7. String str= s.next();

8. } catch (IOException ioe) {

9. System.out.println("Could not open the file");

10. }

11. }

12.}

Source Code that catches IO Exceptions.

What if I really don't care about the exceptions

16

 Certainly not advisable other than writing toy programs. But
to bypass the compilation error messages triggered by
methods declaring unchecked exceptions, you could declare
"throws Exception" in your main() (and other methods), as
follows:

 1. import java.util.Scanner;

2. import java.io.File;

3. public class test {

4. public static void main(String args[]) throws Exception {

5. Scanner in = new Scanner(new File("test.in"));

6. }

7. }

Source Code not to catch the exception but to throw it.

Exception Handling Process
17

 When an exception occurs inside a Java method, the method creates an
Exception object and passes the Exception object to the JRE (in Java term, the
method "throws" an exception). The Exception object contains the type of the
exception, and the state of the program when the exception occurs. The JRE is
responsible for finding an exception handler to process the Exception object.
It searches backward through the call stack until it finds a matching exception
handler for that particular class of Exception object (in Java term, it is called
"catch" the exception). If the JRE cannot find a matching exception handler in
all the methods in the call stack, it terminates the program.

 This process is illustrated as follows. Suppose
that methodD() encounters an abnormal
condition and throws a IOException to the
JRE. The JRE searches backward through the
call stack for a matching exception handler.
It finds methodA() having a IOException
handler and passes the exception object to
the handler. Notice that methodC() and
methodB() are required to "throws
IOException" upwards in order to compile
the program.

How to Catch Exceptions
18

 Catch exceptions using try blocks:

 Notes:

1. Each catch clause specifies the type of one exception, and provides a name for it
(similar to the way a function header specifies the type and name of a
parameter). Java exceptions are objects, so the statements in a catch clause can
refer to the thrown exception object using the specified name.

2. The finally clause is optional.

3. In general, there can be one or more catch clauses. If there is a finally clause,
there can be zero catch clauses.

try {

 // statements that might cause exceptions

 // possibly including function calls

} catch (exception-1 id-1) {

 // statements to handle this exception

} catch (exception-2 id-2) {

 // statements to handle this exception

 .

 .

 .

} finally {

 // statements to execute every time this try block

executes

}

try-catch-finally
19

 The syntax of try-catch-finally is:

 If no exception occurs during the running of the try-block, all the catch-blocks are skipped,
and finally-block will be executed after the try-block. If one of the statements in the try-block
throws an exception, the Java runtime ignores the rest of the statements in the try-block, and
begins searching for a matching exception handler. It matches the exception type with each of
the catch-blocks sequentially. If a catch-block catches that exception class or catches a
superclass of that exception, the statement in that catch-block will be executed. The statements
in the finally-block are then executed after that catch-block. The program continues into the
next statement after the try-catch-finally, unless it is pre-maturely terminated or branch-out.

 If none of the catch-blocks matches, the exception will be passed up the call stack - if the
method's signature declares that this checked exception to be thrown; or the exception is an
unchecked exception. The current method terminates.

try {

 // main logic, uses methods that may throw Exceptions

 ...

} catch (Exception1 ex) {

 // error handler for Exception1

 ...

} catch (Exception2 ex) {

 // error handler for Exception1

 ...

} finally { // finally is optional

 // clean up codes, always executed regardless of exceptions

 ...

}

Notes
20

 getMessage(): Returns the message specified if the object is constructed using
constructor Throwable(String message).

 toString(): Returns a short description of this Throwable object, consists of the
name of the class, a colon ':', and a message from getMessage().

 A catch block catching a specific exception class can also catch its
subclasses. Hence, catch(Exception ex) {...} catches all kinds of exceptions.
However, this is not a good practice as the exception handler that is too
general may unintentionally catches some subclasses' exceptions it does not
intend to.

 The order of catch-blocks is important. A subclass must be caught (and
placed in front) before its superclass. Otherwise, you receive a compilation
error "exception XyzException has already been caught".

 The finally-block is meant for cleanup code such as closing the file,
database connection regardless of whether the try block succeeds. The
finally block is always executed (unless the catch-block pre-maturely
terminated the current method).

Example
21

import java.util.Scanner;

import java.io.File;

import java.io.FileNotFoundException;

public class test {

 public static void main(String[] args) {

 try { // main logic

 System.out.println("Start of the main logic");

 System.out.println("Try opening a file ...");

 Scanner in = new Scanner(new File("test.in"));

 System.out.println("File Found, processing the file ...");

 System.out.println("End of the main logic");

 } catch (FileNotFoundException e) { // error handling separated from the main logic

 System.out.println("File Not Found caught ...");

 } finally { // always run regardless of exception status

 System.out.println("finally-block runs regardless of the state of exception");

 }

 // after the try-catch-finally

 System.out.println("After try-catch-finally");

 }

}

Start of the main logic

Try opening a file ...

File Not Found caught ...

finally-block runs regardless of the state of

exception

After try-catch-finally

Output when the FileNotFoundException triggered Start of the main logic

Try opening a file ...

File Found, processing the file ...

End of the main logic

finally-block runs regardless of the state of

exception

After try-catch-finally

Output when no exception triggered:

Notes
22

 A try-block must be accompanied by at least one catch-block or a
finally-block.

 You can have multiple catch-blocks. Each catch-block catches only
one type of exception.

 A catch block requires one argument, which is a throwable object
(i.e., a subclass of java.lang.Throwable), as follows:

 catch (AThrowableSubClass aThrowableObject) {

 // exception handling codes

 }

 You can use the following methods to inside the catch clause to
retrieve the type of the exception and the state of the program
from the Throwable object:

 printStackTrace(): Prints this Throwable and its call stack trace to the
standard error stream System.err. The first line of the outputs contains
the result of toString(), and the remaining lines are the stack trace. This is
the most common handler, if there is nothing better that you can do.

